
问题
假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有。可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去。
给定一个花坛(表示为一个数组包含0和1,其中0表示没种植花,1表示种植了花),和一个数 n 。能否在不打破种植规则的情况下种入 n 朵花?能则返回True,不能则返回False。
输入: flowerbed = [1,0,0,0,1], n = 1
输出: True
输入: flowerbed = [1,0,0,0,1], n = 2
输出: False
注意:
数组内已种好的花不会违反种植规则。
输入的数组长度范围为 [1, 20000]。
n 是非负整数,且不会超过输入数组的大小。
Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, flowers cannot be planted in adjacent plots – they would compete for water and both would die.
Given a flowerbed (represented as an array containing 0 and 1, where 0 means empty and 1 means not empty), and a number n, return if n new flowers can be planted in it without violating the no-adjacent-flowers rule.
Input: flowerbed = [1,0,0,0,1], n = 1
Output: True
Input: flowerbed = [1,0,0,0,1], n = 2
Output: False
Note:
The input array won’t violate no-adjacent-flowers rule.
The input array size is in the range of [1, 20000].
n is a non-negative integer which won’t exceed the input array size.
示例
public class Program { public static void Main(string[] args) { int[] nums = null; nums = new int[] { 1, 0, 0, 0, 1 }; var res = CanPlaceFlowers(nums, 1); Console.WriteLine(res); Console.ReadKey(); } private static bool CanPlaceFlowers(int[] flowerbed, int n) { //该题比较简单,处理好边界即可 //需要种植的花为0,总是可以 if(n == 0) return true; //数组为0,不可种植 if(flowerbed.Length == 0) { return false; } //当数组为1时,根据是否种植直接判定即可 if(flowerbed.Length == 1) { if(flowerbed[0] == 0) { return true; } else { return false; } } //记录可以种植的数量 int count = 0; //前2个分析 if(flowerbed.Length >= 2 && flowerbed[0] == 0 && flowerbed[1] == 0) { flowerbed[0] = 1; count++; } //连续3个为0时,可种植 for(int i = 1; i < flowerbed.Length - 1; i++) { if(flowerbed[i - 1] == 0 && flowerbed[i] == 0 && flowerbed[i + 1] == 0) { count++; flowerbed[i] = 1; } } //后2个分析 if(flowerbed.Length >= 2 && flowerbed[flowerbed.Length - 1] == 0 && flowerbed[flowerbed.Length - 2] == 0) { flowerbed[flowerbed.Length - 1] = 1; count++; } //可种植数大于等于即将种植的数量时,返回true if(count >= n) return true; //无解时,返回false return false; } }
以上给出1种算法实现,以下是这个案例的输出结果:
True
分析:
该题比较简单,若使用其它ADT,可以考虑左右边界补0的方法,这样可以少处理部分边界问题。
显而易见,以上算法的时间复杂度为: 。
本文由 .Net中文网 原创发布,欢迎大家踊跃转载。
转载请注明本文地址:https://www.byteflying.com/archives/3724。